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A linear Hamiltonian ~ystem with periodic coefficients is subject to a small "dissipative" perturbation that makes it asymptotically 
stable. The conditions 1ruder which the perturbation remains dissipative for all Hamiltonian systems sufficiently close to the original 
one are discussed. O 1997 Elsevier Science Ltd. All rights reserved. 

1. S T A T E M E N T  OF THE P R O B L E M  AND MAIN RESULTS 

Suppose that a linear Hamiltonian system of differential equations (/-/0) with periodic coefficients is 
stable--each of its solutions is bounded. Any stable system is strongly stable if none of its multipliers 
has multiplicity g/eater than one.:~ If there are multiple multipliers, further conditions are necessary 
to ensure strong stability. Such conditions, both necessary and sufficient, have been found by Krein, 
Gel'land and Lidskii (see [1, Ch. 3], [2, Sec. 42] and Section 2C below). 

Let us assume now that the stable system (H0) is perturbed by small ( - e )  terms that leave it linear 
and periodic. We will say that such a perturbation is dissipative for (/-/0) if it makes the system asympto- 
tically stable. We will call the perturbation strongly dissipative if the above property is maintained over 
the whole neighbourhood of the original Hamiltonian system. If all multipliers of the system (H0) are 
distinct, dissipativeness (with a slightly sharper definition) implies strong dissipativeness. When there 
are multiple multipliers, additional conditions are needed. A sufficient condition was established in [3], 
where both Hamiltonian and non-Hamiltonian perturbations of the same order as E are considered to 
be small (see Section 7 below). 

The main purpose of this paper is to show that this condition is also necessary. To be precise: it is 
almost necessary and sufficient, to the extent that this is usually possible for stability conditions: if strict 
inequalities (of the < type) are sufficient, then non-strict inequalities (~<) are necessary for stability. 
This statement holds for both versions of the definition--that used in [3] and that presented below. 
We will now give a rigorous formulation. 

Let us write the initial Hamiltonian system (H0) as 

,:! o 0,+l dx JHo(t)x; Ho(t)_ Ho(t + T), (1.1) 
dt -1, 

where (for each t) Ho(t) is a symmetric matrix, I ,  is the n x n identity matrix and x ~ R 2~. 
Let O0(t) be a fundamental matrix of solutions of system (1.1) such that O0(0) ---/2,. Let ~0 = Oo(T) 

denote the operator of  the mapping in a period (monodromy operator) and ~tk its eigenvalues---the 
multipliers of  system (1.1). System (1.1) is stable if I IXk I = 1 for all k and (I'0 has a complete set of 
eigenvectors---the matrix Cbo can be reduced to diagonal form. (As we shall be using the standard bases 
in ~ and C m, we will not use different notation for linear operators and their matrices.) 

Define a 8-neighbourhood of system (1.1) to be the set of all Hamiltonian systems x = JH(t)x such 
that II n( t )  - no (t) II < 8 (0 <- t <~ T), n( t)  =- n ( t  + T), where I1" II is some matrix norm. (Instead of 
uniform closeness of H and Ho one might require closeness in the mean: smallness of the integral if 
II n (t) - H 0 (t) II over a period.) 

System (1.1) is .,;aid to be strongly stable if, for some 5 > 0, all the systems in its 5-neighbourhood 
are stable. 

Let us consider a "perturbed" system with the same period 
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= JHo(t)x + D(t,l~)x; D(t,e) = e.D(t)+ o(~) (1.2) 

Definition 1. The perturbation D(t, E)x is said to be dissipative, for system (1.1) if system (1.2) is 
asymptotically stable for all E in 0 < e < e. (all its multipliers lie inside the unit circle). 

If system (1.1) admits of a dissipative perturbation, then I l~ I = 1 for all k, but the system need not 
be stable (the solutions may increase only weakly, linearly in t). "Normally", in a dissipative perturbation 
the distance ~ ( e )  from the circle I Ix I = 1 is of the order of e. In order to exclude degenerate cases, where 
the answer may depend on (unwritten) terms o(e), we will incorporate this requirement in the definition. 

Definition la. A perturbation D(t, E)x is dissipative in the first approximation if all the multipliers of 
system (1.2) satisfy the inequality I gk(e) I < 1 - Ce (where c < 0 is independent of e). 

Definition 2. A perturbation D(t, e)x is strongly dissipative for system (1.1) if it is dissipative for any 
system in some ~-neighbourhood of  (1.1). 

Remark 1. For system (1.1) to admit of a strongly dissipative perturbation it must be strongly stable. Indeed, if 
there is no strong (Hamiltonian) stability, then any ~-neighbourhood of (1.1) contains an exponentially unstable 
system (that is, a system with multipliers outside the unit circle). Instability is preserved for sufficiently small r.. 

In order to establish conditions for dissipativeness, we will examine how the eigenvalues of the 
monodromy operator • are affected by a small perturbation. To simplify matters, we shall assume 
that D(t, e) is an analytic function of  e. We shall also assume, without special mention, that the matrix 
functions H(t) and D(t, E) are periodic functions of t with period T (and also continuous or piecewise 
continuous). 

2. A U X I L I A R Y  I N F O R M A T I O N  

A. Transition to the complex domain (see [ 1]) 
To change from ~ to C m (m = 2n), we complete the definition of  the linear operatorsA in the usual 

way:Az = Ax +/ ,4y  for z = x + iy (x, y ~ Rm). When that is done, A~ = A-z, ( i  = £ - iy). Let (x,y) be 
the standard scalar product in R 'n. In C m, define 

(z, w) = ~,ZkW'i'; z = (zl,...uz"); w = (w I ..... w m) (2.1) 
k=l 

The antisymmetric bilinear form [x, y] = (Jx, y), which is invariant to the interchange ofx  andy since 
the system is Hamiltonian, becomes [z, w] = (Jz, w); the values of  [z, z] are then pure imaginary. We 
define 

(z, w) = i[z, w] -- i(./z, w) (2.2) 

The quadratic (Hermitian) form v(z) = (z, z) is real and non-degenerate, but of variable sign. Let + 
A denote the operator adjoint t oA in the sense of (2.2): (Az, w) = (z,A+w). IrA is a real matrix, then 
A + = -JA*J, where A* is the transpose. 

The monodromy operator • for a Hamiltonian system preserves [x,y] (the matrix of • is symplectic). 
In C m we obtain (Oz, tI~) = (z, w), that is, • is a unitary operator in the sense of (2.2), O + = • -1. If e 
is an eigenvector, ~ = ge, then (Oe, Oe) = I g 12(e, e). Hence it follows that either I Ix I = 1 or v(e) = 
0. If I Ix I = 1 but g is a multiple eigenvalue associated with a Jordan cell, then again v(e) = 0. Indeed, 
in that case there is a vector f such that O f -  Ixf = e. Then (e, e) = (!i -1 - Ix) (f, e~ = 0. If I Ix I = 1 and 
g is a simple eigenvalue, then v(e) • 0. Let O e  k = Ixkek ; t h e n  (e l ,  e2) = 0 if IX'IX-~ • 1. 

B. Lemmas from perturbation theory for linear operators in C m [4] 
Lemma 1. Let Eo be an s-dimensional invariant subspace of an operator A0, corresponding to an 

eigenvalue k of multiplicity s. LetA(e)  = A0 + e.B. Then for [ e [ < e. the operatorA(e) has an invariant 
subspace E~ close to E0: if PE is the operator of projection onto E~ (P~l(e)  ='A(e)Pe, then [[ P~ - P 0  [[ 
<~ Ce. 

If all the eigenvalues ofA 0 are different, then kk(E) are analytic functions of e in the neighbourhood 
of e = 0. When there are multiple eigenvalues ~(0) ,  that is not the case. But if A0 has no Jordan cells 
then, to the first order in e, the formulae of perturbation look the same as they would have been in the 
absence of multiplicity. 
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Lemma 2. Let,40 have an s-fold eigenvalue k, associated with an s-dimensional invariant subspace 
E0 of  eigenvector,'s. Then for I e I "~ 1, A(E) has eigenvalues ~ ( e )  such that 

~,k(e)  = Z,+ e~'k + o ( e ) ,  k = 1 . . . . .  s (2 .3 )  

where Tk are the eigenvalues of the operator B 1 = PB on E0 (the latter is an invariant subspace of  this 
operator too and P is a projector onto E0). Each Tk in formulae (2.3) is repeated a number of times 
equal to its multiplicity. 

Refinements. 1. So,me of the 2~(tz) may be identically multiple: X/.(E) --- ~(e)--the perturbation does not necessarily 
remove the degeneracy entirely. 
2. The lemmas remain valid when B is replaced by an analytic function B(e) of e; in that case B1 = PoB(0). 

C. Conditions o f  strong stability for Hamiltonian systems [1] 
Let ~0 be the monodromy operator of  system (1.1) and let ~1.1 . . . . .  ~l/be the set of  (pairwise distinct) 

multipliers (1 ~< 2n). Let  Ej be the invariant subspace associated with gi" 

Theorem (Krein-Gel'fand-Lidskii). A necessary and sufficient condition for system (1.1) to be strongly 
stable is that the torm v(z) = (z, z) be definite on each of the subspaces Ej. 

Remark 2. It follows from the conditions of the theorem (sccA) that I gj I = 1 for eachj and ~0 has no Jordan 
cells. If the conditions of the theorem hold for ~0, it is also true for symmetric matrices close to ~0. Hence it is 
clear that the conditions are indeed sufficient. Note that the conditions of the theorem exclude real p#. 

3. D I S S I P A T I V E  P E R T U R B A T I O N S  IN T H E  CASE 
OF S I M P L E  M U L T I P L I E R S  

Suppose that all the multipliers of  system (1.1) are simple and the system is stable: ~I~0e k = ~kek; 
k = 1 . . . .  ,2n; I g~ I = 1. The multipliers of system (1.2) may be written as 

ttk(~) = Ix k + e% + O(e 2) 

Put rk = Re(l~l/c). If !) < 0, then (for small e) I gj(e) I < 1. A sufficient condition for d(t, e)x to be 
dissipative is that, for all j ,  we have ~) < 0; a necessary condition is that each of the inequalities ~) ~< 0 
holds. If the inequalities ~) < 0 hold for Ho(t), they remain true for nearby functions H(t). 

Thus: if a perttu:bation D(t, E)x for system (1.1) is dissipative in the first approximation, it is strongly 
dissipative (see the definitions in Section 1). 

Let us write down the formulae more explicitly. Let the monodromy operator of  system (1.2) have 
the form the = ~0 + e~It0 + o(e). We have the usual expressions for Yk: Yk = (~ItOek, ek)/(ek, ek) (we recall 
that here (ek, ek) ~ 0 for all k). We note that gk (XF0ek, ek) = (O~l~F0ek, ek) and rewrite the conditions 
rk < O (k = l ,  . . . , 2n) as 

Q~(ek) < O; Qv (z) = (z, z) Re(.o]~P0z, z) (3.1) 

Assuming that the fundamental matrix ~o(t) is known, we have a formula for Vo = ~olXFo 

F 

the = tb o + E~Fo + o(e); V o = ~ ~o  I ( t )D(t)O o (t)dt (3.2) 
0 

Thus, in the case of  simple multipliers everything is indeed simple. We now proceed to the main 
problem--investigating the case of multiple multipliers. 

Remark 3. If there is a simple multiplier p~ (nothing being known about the others), then the condition 
Qv(e]) ~< 0 is obviously necessary for D(t, e)x to be dissipative. 

4. S U F F I C I E N T  C O N D I T I O N S  F O R  S T R O N G  D I S S I P A T I V E N E S S  

Let system ( 1.1 ) be strongly stable (see Sections 1 and 2C). Then each multiplier gt(e) of system (1.2) 
is "generated" by some multiplier gj of system (1.1) (see Lemma 2) 
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~tk(e)=laj +e'Tt +O(e), j=j(k)  

Fixing j, consider the group of multipliers p.k(e) generated by a single ~t = lXj. Let E = Ej be the 
corresponding invariant subspace of ~0 and P = Pj the projector onto Ej, PO 0 = ~0P. The numbers ~k 
are the eigenvalues of P ~ 0  on E (for ~ 0  see (3.2)). All ~tk(e) in this group lie within the unit circle if 
Re(P.Tk) < 0 for all k, i.e. all the eigenvalues of  the operator K = laP~0 (considered on E) lie in the 
left half-plane. A sufficient condition for that to be true is Re(Kz, z ) < 0 if v(z) = (z, z) > 0 on E (for 
z ¢ 0); if v(z) < 0 on E, the inequality is reversed. We now observe that, as ~0 is a "unitary" operator, 
the projectors P are "self-adjoint": (Pz, w ) = (z, Pw ) .  Therefore, for z e E, V0 = (l)0-1'tlt0 

<K.,.>-- z)-- (.oZ,.o-)--(Vo., =) (4.1) 

Running through all Ep we obtain: I lXk(e) I < 1 for all k, 0 < e < e., of for anyj  we have 

v(z) ¢ 0 for all z ~ Ej (Z ;t: 0); V(Z) -" (Z, Z) (4.2) 

Qv(z) - v(z)Q(z) < 0 for the same z; Q(z) = Re(V0z, z) (4.3) 

Conditions (4.2) and (4.3) are also sufficient for strong dissipativeness. If we replace Ho(t) by a nearby 
function H(t)(ll H(t) -Ho(t) II) </$, then ~0, ~ 0  and V0 are changed by an amount ~ C6(~0 ~-~ ~ ,  Vo ~-~ 
10. The subspaces Ej are replaced by nearby invariant subspaces E~ of ~ .  (see Lemma 1). For sufficiently 
small 5, inequalities (4.2) and (4.3) remain valid for V and Ej. 

Remark 4. Every eigenspace Ek(~ ) of • is contained in some E~. Inequalities (4.2) and (4.3) ensure that D(t, 
e)x will be dissipative in relation to H(t) "with room to spare": they need only hold for each Ek(~) separately. 

Remark 5. Sufficient conditions for stability may be obtained more easily by constructing a "Lyapunov function" 
L for the mapping (]De (L(~z) < L(z) (see [3]). Our proof anticipates the analysis of the necessary conditions. 

5. N E C E S S A R Y  C O N D I T I O N S  F O R  S T R O N G  D I S S I P A T I V E N E S S  

Conditions (4.2) and (4.3) are not necessary for D(t, e)x to be dissipative for a given Ho(t). Indeed, 
the truth of the inequalities Re(~j~'k) < 0 for all k and j = j(k) is equivalent to the requirement that 
Qv(f) < 0 for all eigenvectors f of the operators PjO0 (in the appropriate subspaces Ej) and for them 
only. But if the dissipative property is invariant to arbitrarily small changes in Ho(t), inequalities (4.2) 
and (4.3) (with a ~< sign in (4.3)) become necessary: any vector e in Ej may become an eigenvector of 

with a simple eigenvalue. 
Thus, let the perturbation D(t, e)x be strongly dissipative for a given system (1.1) (see Definition 2), 

and fix some ~i. System (1.1) is strongly stable in the Hamiltonian sense (see Remark 1). Let us assume 
that in some subspace Ej of dimension greater than one (see Remark 3) there is a vector e such that 
Qv(e) > 0. Define an operator 4) as follows. Put ~e  = laae and ~ = ~ ,  where Ixa = stjexp (ia), a > 
0. Let E be the two-dimensional subspace spanned by e and ~. The operator • is unitary on E in the 
sense of the "scalar product" (z, w), since e and ~ are orthogonal (see the end of  Section 2A). Consider 
an (m - 2)-dimensional subspace orthogonal to E and define there Oz = (b0z. Complete the definition 
of • to C m by linearity; ~ is unitary in C m, O i  = Oz for all z. Therefore 4) is a real symplectic matrix. 
The set of eigenvalues of • consists of ga, ~ and all ~tj, j = 1 . . . .  ,1. 

Lemma 3. Let O0 be generated by H0(t): ~0 is the monodromy matrix of the periodic Hamiltonian 
system x" = JHo(t)x. Any symplectic matrix • such that II • - ~0 II < ~ is generated by a matrix function 
H(t) such that 

IH(O- Ho(t) I < 

We omit the proof. 
Now suppose that the operator • defined above is generated by a symmetric matrix function H(t) 

and II H(t) -Ho (t) II ~ CII • - ~0 II ~< C2rl. Choose a so small that C2a is less than ~i and the eigenvalue 
~ta is not multiple (is different from any ~tj). Now II H(t) - Ho (t) II < 5 and so the system x" = JH(t)x + 
D(t, e)x must be asymptotically stable for small e > 0. But this is impossible, since e is an eigenvector 
of • belonging to a simple eigenvalue, and so Qv(e) > 0 (see Remark 3). 
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Thus, the condition Qv(z) ~< 0 for all vectors z of (any) subspaee E i is necessary for the system to be 
strongly dissipative. Instead of "all vectors of Ei" , one can also speak of all eigenvectors of ~0 (see 
Remarks 1 and 2). 

6. FORMULATION OF THE T H E O R E M 

Let  x = JHo(t)x be a periodic Hamiltonian system, ~0 its monodromy operator and Ej the invariant 
subspaces for ~0 in C m associated with the (pairwise distinct) eigenvalues ~j. Combining the material 
of Sections 4 and 5, we obtain the following. 

Theorem. A perturbation D(t,  e)x of system (1.1) is strongly dissipative in the sense of Definition 2 
if, in any subspaoz Ej, the quadratic forms v(z) and Q(z) are sign-definite and have opposite signs: 
v(z)Q(z) < 0 for z ~ Ei, z ,  0, where v(z) = (z, z); Q(z) = Re (V0z, z) and V0 is given by formula (3.2). 
The truth of the inequalities v ( z ) ,  0, v(z)Q(z) ~< 0 (for the same z) is a necessary condition for strong 
dissipativeness. 

The condition v ( z ) ,  0 relates to the unperturbed system (1.1). It implies that the system is strongly 
stable in the class of Hamiltonian systems (see Section 2). The form of the function Q(z) depends on 
the principal terrn of the perturbation eD(t)x. The condition Q(z) ~ 0 means that the effect of the 
perturbation (for all H close to H0) is uniquely defined by D(t).  A more explicit expression for Q(z) is 
(see Section 2A and formula (3.2)) 

T , 

Q(z) = - Im(JVoz, z); JV o -- ~ • o (t)JD(t)dp o (t)dt (6.1) 
0 

where we have used the equality 

• o I ( t )  = O~( t )  * = -JdP o (t)J. 

7. FINAL REMARKS: DISCUSSION OF THE DEFINITIONS 

Strong Hamiltonian stability may be defined by explicitly introducing small perturbations. We will 
say a system x" = JH0(t)x is strongly stable if, for any (symmetric) matrix function Hi(t) ,  e. exists such 
that, whenever I e I < e., the system x" = J(Ho(t) + e//l(t))x is stable. This definition is equivalent to 
the previous one. Once this definition is adopted, small non-Hamiltonian perturbations may be treated 
"on a par" with Hamiltonian perturbations. 

Definition 3 [3]. The system x" = JHo(t)x (1.1) is said to be strongly stable under a given non- 
Hamiltonian perturbation d(t, e)x if, for any matrix function Hi( t )  (I-I~1 = H1), e. exists such that the 
perturbed system (7.1) is stable for 0 <~ e ~< e. 

x" = J(Ho(t) + gtt  l(t))x + D(t, E)x 

D(t, e) = rd)(t) + o(~) (7.1) 

The Hamiltonian perturbation in (7.1) may exceed the non-Hamiltonian perturbation as strongly as 
desired. Using this. fact, one can prove that systems which are stable in the sense of Definition 3 are 
strongly stable in the Hamiltonian sense. 

Definition 2 also yields a concept of stability under a perturbation. 

Definition 2a. System (1.1) is strongly stable under a given perturbation D(t,  e)x if (a) it is stable in 
the absence of perturbations (when e = 0); (b) the perturbed system (1.2) is asymptotically stable for 
all e in some interval 0 < e < e.; and (c) both properties are maintained in a certain ~-neighbourhood 
of system (1.1). 

In other words, a Hamiltonian system (1.1) is strongly stable under a given (non-Hamiltonian) 
perturbation D(t, e)x if the perturbation is strongly dissipative for the system. 

Definition 3 is, at first glance, quite different from Definition 2a. In actual fact they are "almost 
equivalent". Indeed a system is stable in the sense of Definition 3 if inequalities (4.2) and (4.3) are true; 
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this sufficient condi t ion was established previously [3] (in real notat ion,  see Appendix) .  On  the o the r  
hand,  the non-str ict  inequalities (4.3) are necessary  condit ions for  stability in the sense of  Definit ion 3 
(see Appendix) .  Thus,  the same sufficient condi t ions  and (very similar) necessary condit ions "work"  
for  both  definitions. I f  one requires  in addi t ion tha t  the answer - - s t ab le  or  u n s t a b l e - - b e  de te rmined  
by D(t),  the strict inequalities (4.2) and (4.3) b e c o m e  necessary and sufficient in bo th  cases. 

A last comment - - -on  uni form stability. T h e  fact  tha t  all solutions of  a l inear homogeneous  system 
of  differential  equat ions  are bounded  is equivalent  to stability in Lyapunov ' s  sense of  its trivial (and 
any other)  solution. For  families of  equat ions  it is useful  to go back to the original definition: the trivial 
solution of  a system X = A(t)x  is stable if I x(t) I <~ C I x(0) I, where  I" I deno tes  some no rm in the space 
of  vectors  x. T h e  larger ( the least possible) cons tant  C, the "worse"  the stability of  the system. 

A family of  equat ions  is uniformly stable if one  can choose  the same constant  C for  all equat ions of  
the family. It  is na tura l  to incorpora te  some  such uniformity  in the not ion of  s trong stability: if the 
constant  C is arbitrari ly large for  systems close to the given system, one  could scarcely call the system 
"strongly stable".  However ,  there  is no need  to include this requ i rement  in the definition. 

The  following s ta tements  can be verified. 
1. Let  system (1.1) be strongly stable in the class of  Hami l ton ian  systems. Then  the stability is uni form 

in some  ne ighbourhood  of the system. 
2. Let  system (1.1) be  stable in the sense  of  Defini t ion 3; more  precisely, suppose  that  conditions 

(4.2) and (4.3) are satisfied. Then,  if II H1 (t) II ~< M, e, > 0 exists such that,  for  0 ~< e ~< e., all the systems 
(7.1) are uni formly  stable. A similar s t a t emen t  holds for  Definit ion 2a. 

A P P E N D I X  

A. Real notation 
Let E be a subspace of C ~. We define Re EC R m as follows: if z e E and z = x + iy, then x, y E Re E. I r E  is 

the eigenspace of the monodromy operator associated with an eigenvalue Ix = ~ + i[~ (13 ~ 0), then Re E is associated 
with the pair Ix, ~. 

The condition (z. z) ~ 0 on E is equivalent to the condition [q,x, x] ¢ 0 on Re E: if Oz = Ixz, then (z, z) = 21~-l[~x, 
x]. For an arbitrary operatorA we have Re (Az, z) = (A~z, z), where 2A s = A + A ÷. If the operatorA is defined by 
a real matrix, then, whenever ~ = Oz 

(Asz, z) = 2[$ -I [As~x, x]. 

Conditions (4.2) and (4.3) may be rewritten as follows. For each j, it must be true that [(I)x, x] ~ 0 (4.2"), [¢[)x,x] 
[Vs~x, x] < 0 (4.3') for allx ~ Re Ej (x * 0). The explicit form of condition (4.3") can be derived by using formula 
(3.2) for V(and the fact thatA + = -JA*J) 

2[Vs~x, x] = (JldgX, x) 
T 

Jl = ~ ~ *  ( t)(JD(t)  + D* ( t )J )~( t )d t  
0 

This expression is identical (apart from notation) with the formula established in [3]. 

B. On conditions for stability in the sense of Definition 3 
For the monodromy operator of system (7.1) we have (see (3.2)) 

• t=(l ,0+e~l '0+o(e);  ' t ' o=~0V;  v=V0+Vl 
T T 

V 0 = S ~ l ( t ) D ( t ) ~ o ( t ) d t ;  VI = S ~ l ( t ) J H l ( t ) ~ o ( t ) d t  
0 0 

For any symmetric matrix function, Hi(t) V~ = -VI. Therefore, Re (Vz, z) = Re (V0z, z). The rest of the proof 
that conditions (4.2,) and (4.3) are sufficient for system (7.1) to be stable for 0 < e ~ 1 is identical with that presented 
in Sections 4 and 5 (see also Remark 5). 

The proof of necessity may be sketched as follows: Suppose we know that system (7.1) is strongly stable under 
a given non-Hamiltonian perturbation. Let us assume that strong stability in the Hamiltonian sense has already 
been proved. Let IX1 . . . . .  IXt (l <~ 2n) be the eigenvalues of ~0- Once again (see Section 4), for eachj  ~< 1 we have 
a group of multipliers of system (7.1) for which Bk(e) = IXj + e-'T~ + o(E), where ~/k are the eigenvalues of the operator 
PU/0 in the subspace Ej, which depend on the choice of i l l ,  P = Pj. If system (7.1) is stable in the sense of Definition 
3, then necessarily for any Hi(t). In other words, all the eigenvalues of the operator PIV, considered on E i, which 
depend on the choice of i l l ,  P = Pj. If system (7.1) is stable in the sense of Definition 3, then necessarily Re(li~/k) 
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<~ 0 for any HI(t). ItL other words, all the eigenvalues of the operator PjV, considered on Ep lie in the (closed) left 
half-plane for any H1. We now note that V~ = - V1 and that any such "anti-symmetric" operator is obtained for 
some Hi(t) (this is an "infinitesimal" analogue of Lemma 3). Fixj and prescribe E i as an invariant subspace of V 1, 
with the following definition: on El, put V1 = A,A + = -A, on the other Ejs, put VI = 0 (and complete the definition 
by linearity). Now PV1 = V1 • A o n  Ej .  

The situation is thus that the eigenvalues of the operator P V  o + A lie in the (closed) left half-plane for any "anti- 
symmetric"A. This i[s equivalent to the condition that Q(z) = Re (V0z, z) <~ 0 whenever v(z) = (z, z) ~> 0 on Ej or 
v(z)Q(z) ~< 0 for any sign of v(z). 
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